NumPy Cheat Sheet - 快速参考指南,收录常用语法、命令与实践。
You’ll also need to import numpy to get started:
import numpy as np
| - | - |
|---|---|
np.loadtxt('file.txt') | From a text file |
np.genfromtxt('file.csv',delimiter=',') | From a CSV file |
np.savetxt('file.txt',arr,delimiter=' ') | Writes to a text file |
np.savetxt('file.csv',arr,delimiter=',') | Writes to a CSV file |
| - | - |
|---|---|
np.array([1,2,3]) | One dimensional array |
np.array([(1,2,3),(4,5,6)]) | Two dimensional array |
np.zeros(3) | 1D array of length 3 all values 0 |
np.ones((3,4)) | 3x4 array with all values 1 |
np.eye(5) | 5x5 array of 0 with 1 on diagonal (Identity matrix) |
np.linspace(0,100,6) | Array of 6 evenly divided values from 0 to 100 |
np.arange(0,10,3) | Array of values from 0 to less than 10 with step 3 (eg [0,3,6,9]) |
np.full((2,3),8) | 2x3 array with all values 8 |
np.random.rand(4,5) | 4x5 array of random floats between 0–1 |
np.random.rand(6,7)*100 | 6x7 array of random floats between 0–100 |
np.random.randint(5,size=(2,3)) | 2x3 array with random ints between 0–4 |
| - | - |
|---|---|
arr.size | Returns number of elements in arr |
arr.shape | Returns dimensions of arr (rows,columns) |
arr.dtype | Returns type of elements in arr |
arr.astype(dtype) | Convert arr elements to type dtype |
arr.tolist() | Convert arr to a Python list |
np.info(np.eye) | View documentation for np.eye |
| - | - |
|---|---|
np.copy(arr) | Copies arr to new memory |
arr.view(dtype) | Creates view of arr elements with type dtype |
arr.sort() | Sorts arr |
arr.sort(axis=0) | Sorts specific axis of arr |
two_d_arr.flatten() | Flattens 2D array two_d_arr to 1D |
arr.T | Transposes arr (rows become columns and vice versa) |
arr.reshape(3,4) | Reshapes arr to 3 rows, 4 columns without changing data |
arr.resize((5,6)) | Changes arr shape to 5x6 and fills new values with 0 |
| - | - |
|---|---|
np.append(arr,values) | Appends values to end of arr |
np.insert(arr,2,values) | Inserts values into arr before index 2 |
np.delete(arr,3,axis=0) | Deletes row on index 3 of arr |
np.delete(arr,4,axis=1) | Deletes column on index 4 of arr |
| - | - |
|---|---|
np.concatenate((arr1,arr2),axis=0) | Adds arr2 as rows to the end of arr1 |
np.concatenate((arr1,arr2),axis=1) | Adds arr2 as columns to end of arr1 |
np.split(arr,3) | Splits arr into 3 sub-arrays |
np.hsplit(arr,5) | Splits arr horizontally on the 5th index |
| - | - |
|---|---|
arr[5] | Returns the element at index 5 |
arr[2,5] | Returns the 2D array element on index [2][5] |
arr[1]=4 | Assigns array element on index 1 the value 4 |
arr[1,3]=10 | Assigns array element on index [1][3] the value 10 |
arr[0:3] | Returns the elements at indices 0,1,2 (On a 2D array: returns rows 0,1,2) |
arr[0:3,4] | Returns the elements on rows 0,1,2 at column 4 |
arr[:2] | Returns the elements at indices 0,1 (On a 2D array: returns rows 0,1) |
arr[:,1] | Returns the elements at index 1 on all rows |
arr<5 | Returns an array with boolean values |
(arr1<3) & (arr2>5) | Returns an array with boolean values |
~arr | Inverts a boolean array |
arr[arr<5] | Returns array elements smaller than 5 |
| - | - |
|---|---|
np.add(arr1,arr2) | Elementwise add arr2 to arr1 |
np.subtract(arr1,arr2) | Elementwise subtract arr2 from arr1 |
np.multiply(arr1,arr2) | Elementwise multiply arr1 by arr2 |
np.divide(arr1,arr2) | Elementwise divide arr1 by arr2 |
np.power(arr1,arr2) | Elementwise raise arr1 raised to the power of arr2 |
np.array_equal(arr1,arr2) | Returns True if the arrays have the same elements and shape |
np.sqrt(arr) | Square root of each element in the array |
np.sin(arr) | Sine of each element in the array |
np.log(arr) | Natural log of each element in the array |
np.abs(arr) | Absolute value of each element in the array |
np.ceil(arr) | Rounds up to the nearest int |
np.floor(arr) | Rounds down to the nearest int |
np.round(arr) | Rounds to the nearest int |
| - | - |
|---|---|
np.add(arr,1) | Add 1 to each array element |
np.subtract(arr,2) | Subtract 2 from each array element |
np.multiply(arr,3) | Multiply each array element by 3 |
np.divide(arr,4) | Divide each array element by 4 (returns np.nan for division by zero) |
np.power(arr,5) | Raise each array element to the 5th power |
| - | - |
|---|---|
np.mean(arr,axis=0) | Returns mean along specific axis |
arr.sum() | Returns sum of arr |
arr.min() | Returns minimum value of arr |
arr.max(axis=0) | Returns maximum value of specific axis |
np.var(arr) | Returns the variance of array |
np.std(arr,axis=1) | Returns the standard deviation of specific axis |
arr.corrcoef() | Returns correlation coefficient of array |
地址
Level 10b, 144 Edward Street, Brisbane CBD(Headquarter)Level 2, 171 La Trobe St, Melbourne VIC 3000四川省成都市武侯区桂溪街道天府大道中段500号D5东方希望天祥广场B座45A13号Business Hub, 155 Waymouth St, Adelaide SA 5000Disclaimer
JR Academy acknowledges Traditional Owners of Country throughout Australia and recognises the continuing connection to lands, waters and communities. We pay our respect to Aboriginal and Torres Strait Islander cultures; and to Elders past and present. Aboriginal and Torres Strait Islander peoples should be aware that this website may contain images or names of people who have since passed away.
匠人学院网站上的所有内容,包括课程材料、徽标和匠人学院网站上提供的信息,均受澳大利亚政府知识产权法的保护。严禁未经授权使用、销售、分发、复制或修改。违规行为可能会导致法律诉讼。通过访问我们的网站,您同意尊重我们的知识产权。 JR Academy Pty Ltd 保留所有权利,包括专利、商标和版权。任何侵权行为都将受到法律追究。查看用户协议
© 2017-2025 JR Academy Pty Ltd. All rights reserved.
ABN 26621887572