Pandas Cheat Sheet - 快速参考指南,收录常用语法、命令与实践。
You’ll need to import pandas to get started:
import pandas as pd
| - | - |
|---|---|
pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]}) | From a dictionary |
pd.DataFrame(data=[{'a': 1, 'b': 2}, {'a': 3, 'b': 4}]) | From a list of dictionaries |
pd.read_csv('file.csv') | From a CSV file |
pd.read_excel('file.xlsx') | From an Excel file |
| - | - |
|---|---|
df.head() | First 5 rows |
df.tail() | Last 5 rows |
df.shape | Number of rows and columns |
df.info() | Info on DataFrame |
df.describe() | Summary statistics |
df.columns | Column names |
df.index | Index |
df.dtypes | Data types of columns |
| - | - |
|---|---|
df['col1'] | Select column |
df[['col1', 'col2']] | Select multiple columns |
df.loc[0] | Select row by index |
df.loc[:, 'col1'] | Select all rows for 'col1' |
df.iloc[0] | Select row by position |
df.iloc[0, 1] | Select specific value |
df[df['col1'] > 2] | Select rows based on condition |
| - | - |
|---|---|
df.dropna() | Drop rows with any missing values |
df.dropna(axis=1) | Drop columns with any missing values |
df.fillna(0) | Replace missing values with 0 |
df.drop_duplicates() | Drop duplicate rows |
df.rename(columns={'old_name': 'new_name'}) | Rename columns |
df.astype('int') | Change data type |
| - | - |
|---|---|
df['col3'] = df['col1'] + df['col2'] | Add new column |
df.drop('col1', axis=1) | Drop column |
df.append(new_row) | Add new row |
df.insert(2, 'new_col', new_data) | Insert new column at position 2 |
| - | - |
|---|---|
pd.concat([df1, df2]) | Concatenate rows |
pd.concat([df1, df2], axis=1) | Concatenate columns |
pd.merge(df1, df2, on='key') | Merge DataFrames on key |
pd.merge(df1, df2, left_on='key1', right_on='key2') | Merge on different keys |
df1.join(df2, lsuffix='_left', rsuffix='_right') | Join DataFrames |
| - | - |
|---|---|
df['col1'].sum() | Sum of values in column |
df['col1'].mean() | Mean of values in column |
df['col1'].count() | Count of values in column |
df['col1'].min() | Minimum value in column |
df['col1'].max() | Maximum value in column |
df['col1'].std() | Standard deviation |
df['col1'].var() | Variance |
df.groupby('col1').sum() | Group by and sum |
df.groupby('col1').mean() | Group by and mean |
df.groupby(['col1', 'col2']).count() | Group by multiple columns |
| - | - |
|---|---|
df.apply(np.sqrt) | Apply function to all values |
df['col1'].apply(lambda x: x ** 2) | Apply function to column |
df.applymap(str) | Apply function to DataFrame elements |
df['col1'].map({'a': 1, 'b': 2}) | Map values |
df['col1'].replace('a', 1) | Replace values |
| - | - |
|---|---|
df['date'] = pd.to_datetime(df['date']) | Convert to datetime |
df['year'] = df['date'].dt.year | Extract year |
df['month'] = df['date'].dt.month | Extract month |
df['day'] = df['date'].dt.day | Extract day |
df.set_index('date', inplace=True) | Set date as index |
| - | - |
|---|---|
df.to_csv('file.csv') | Save DataFrame to CSV |
df = pd.read_csv('file.csv') | Load DataFrame from CSV |
df.to_excel('file.xlsx') | Save DataFrame to Excel |
df = pd.read_excel('file.xlsx') | Load DataFrame from Excel |
from sqlalchemy import create_engine | Import SQLAlchemy for SQL operations |
engine = create_engine('sqlite:///:memory:') | Create SQL engine |
df.to_sql('table_name', engine) | Save to SQL table |
df = pd.read_sql('table_name', engine) | Load from SQL table |
地址
Level 10b, 144 Edward Street, Brisbane CBD(Headquarter)Level 2, 171 La Trobe St, Melbourne VIC 3000四川省成都市武侯区桂溪街道天府大道中段500号D5东方希望天祥广场B座45A13号Business Hub, 155 Waymouth St, Adelaide SA 5000Disclaimer
JR Academy acknowledges Traditional Owners of Country throughout Australia and recognises the continuing connection to lands, waters and communities. We pay our respect to Aboriginal and Torres Strait Islander cultures; and to Elders past and present. Aboriginal and Torres Strait Islander peoples should be aware that this website may contain images or names of people who have since passed away.
匠人学院网站上的所有内容,包括课程材料、徽标和匠人学院网站上提供的信息,均受澳大利亚政府知识产权法的保护。严禁未经授权使用、销售、分发、复制或修改。违规行为可能会导致法律诉讼。通过访问我们的网站,您同意尊重我们的知识产权。 JR Academy Pty Ltd 保留所有权利,包括专利、商标和版权。任何侵权行为都将受到法律追究。查看用户协议
© 2017-2025 JR Academy Pty Ltd. All rights reserved.
ABN 26621887572