数据压缩与信息熵

2020-06-22

Ann Ann

1992年,美国佐治亚州的WEB Technology公司,宣布做出了重大的技术突破。

该公司的DataFiles/16软件,号称可以将任意大于64KB的文件,压缩为原始大小的16分之一。业界议论纷纷,如果消息属实,无异于压缩技术的革命。

数据压缩

许多专家还没有看到软件,就断言这是不可能的。因为根据压缩原理,你不可能将任意文件压缩到16分之一。事实上,有一些文件是无法压缩的,哪怕一个二进制位,都压缩不掉。

后来,事实果然如此,这款软件从来没有正式发布。没过几年,就连WEB Technology公司都消失了。

那么,为何不是所有的文件都可以被压缩?是否存在一个压缩极限呢,也就是说,到了一定大小,就没法再压缩了?

一、压缩的有限性

首先,回答第一个问题:为什么WEB Technology公司的发明不可能是真的。

反证法可以轻易地证明这一点。假定任何文件都可以压缩到n个二进制位(bit)以内,那么最多有2n种不同的压缩结果。也就是说,如果有2n+1个文件,必然至少有两个文件会产生同样的压缩结果。这意味着,这两个文件不可能无损地还原(解压缩)。因此,得到证明,并非所有文件都可以压缩到n个二进制位以下。

很自然地,下一个问题就是,这个n到底是多少?

二、压缩原理

要回答一个文件最小可以压缩到多少,必须要知道压缩的原理。

压缩原理其实很简单,就是找出那些重复出现的字符串,然后用更短的符号代替,从而达到缩短字符串的目的。比如,有一篇文章大量使用“中华人民共和国”这个词语,我们用“中国”代替,就缩短了5个字符,如果用“华”代替,就缩短了6个字符。事实上,只要保证对应关系,可以用任意字符代替那些重复出现的字符串。

本质上,所谓“压缩”就是找出文件内容的概率分布,将那些出现概率高的部分代替成更短的形式。所以,内容越是重复的文件,就可以压缩地越小。比如,“ABABABABABABAB”可以压缩成“7AB”。

相应地,如果内容毫无重复,就很难压缩。极端情况就是,遇到那些均匀分布的随机字符串,往往连一个字符都压缩不了。比如,任意排列的10个阿拉伯数字(5271839406),就是无法压缩的;再比如,无理数(比如π)也很难压缩。

压缩就是一个消除冗余的过程,相当于用一种更精简的形式,表达相同的内容。可以想象,压缩过一次以后,文件中的重复字符串将大幅减少。好的压缩算法,可以将冗余降到最低,以至于再也没有办法进一步压缩。所以,压缩已经压缩过的文件(递归压缩),通常是没有意义的。

三、压缩的极限

知道了压缩原理之后,就可以计算压缩的极限了。

上一节说过,压缩可以分解成两个步骤。第一步是得到文件内容的概率分布,哪些部分出现的次数多,哪些部分出现的次数少;第二步是对文件进行编码,用较短的符号替代那些重复出现的部分。

第一步的概率分布一般是确定的,现在就来考虑第二步,怎样找到最短的符号作为替代符。

如果文件内容只有两种情况(比如扔硬币的结果),那么只要一个二进制位就够了,1表示正面,0表示表示负面。如果文件内容包含三种情况(比如球赛的结果),那么最少需要两个二进制位。如果文件内容包含六种情况(比如扔筛子的结果),那么最少需要三个二进制位。

一般来说,在均匀分布的情况下,假定一个字符(或字符串)在文件中出现的概率是p,那么在这个位置上最多可能出现1/p种情况。需要log2(1/p)个二进制位表示替代符号。

这个结论可以推广到一般情况。假定文件有n个部分组成,每个部分的内容在文件中的出现概率分别为p1、p2、...pn。那么,替代符号占据的二进制最少为下面这个式子。

log2(1/p1) + log2(1/p2) + ... + log2(1/pn)

= ∑ log2(1/pn)

这可以被看作一个文件的压缩极限。

四、信息熵的公式

上一节的公式给出了文件压缩的极限。对于n相等的两个文件,概率p决定了这个式子的大小。p越大,表明文件内容越有规律,压缩后的体积就越小;p越小,表明文件内容越随机,压缩后的体积就越大。

为了便于文件之间的比较,将上式除以n,可以得到平均每个符号所占用的二进制位。

∑ log2(1/pn) / n

= log2(1/p1)/n + log2(1/p2)/n + ... + log2(1/pn)/n

由于p是根据频率统计得到的,因此上面的公式等价于下面的形式。

p1*log2(1/p1) + p2*log2(1/p2) + ... + pn*log2(1/pn)

= ∑ pn*log2(1/pn)

= E( log2(1/p) )

上面式子中最后的E,表示数学期望。可以理解成,每个符号所占用的二进制位,等于概率倒数的对数的数学期望。

下面是一个例子。假定有两个文件都包含1024个符号,在ASCII码的情况下,它们的长度是相等的,都是1KB。甲文件的内容50%是a,30%b,20%是c,则平均每个符号要占用1.49个二进制位。

0.5log2(1/0.5) + 0.3log2(1/0.3) + 0.2*log2(1/0.2)

= 1.49

既然每个符号要占用1.49个二进制位,那么压缩1024个符号,理论上最少需要1526个二进制位,约0.186KB,相当于压缩掉了81%的体积。

乙文件的内容10%是a,10%是b,……,10%是j,则平均每个符号要占用3.32个二进制位。

0.1*log2(1/0.1)*10

= 3.32

既然每个符号要占用3.32个二进制位,那么压缩1024个符号,理论上最少需要3400个二进制位,约0.415KB,相当于压缩掉了58%的体积。

对比上面两个算式,可以看到文件内容越是分散(随机),所需要的二进制位就越长。所以,这个值可以用来衡量文件内容的随机性(又称不确定性)。这就叫做信息熵(information entropy)。

它是1948年由美国数学家克劳德·香农(Claude Shannon)在经典论文《通信的数学理论》中,首先提出的。

Claude Shannon

五、信息熵的含义

想要理解信息熵这个概念,有几点需要注意。

**(1)信息熵只反映内容的随机性,与内容本身无关。**不管是什么样内容的文件,只要服从同样的概率分布,就会计算得到同样的信息熵。

**(2)信息熵越大,表示占用的二进制位越长,因此就可以表达更多的符号。**所以,人们有时也说,信息熵越大,表示信息量越大。不过,由于第一点的原因,这种说法很容易产生误导。较大的信息熵,只表示可能出现的符号较多,并不意味着你可以从中得到更多的信息。

**(3)信息熵与热力学的熵,基本无关。**这两个熵不是同一件事,信息熵表示无序的信息,热力学的熵表示无序的能量。

近期开课hot
logo

Follow Us

linkedinfacebooktwitterinstagramweiboyoutubebilibilitiktokxigua

We Accept

/image/layout/pay-paypal.png/image/layout/pay-visa.png/image/layout/pay-master-card.png/image/layout/pay-stripe.png/image/layout/pay-alipay.png

地址

Level 10b, 144 Edward Street, Brisbane CBD(Headquarter)
Level 8, 11 York st, Wynyard, Sydney CBD
Business Hub, 155 Waymouth St, Adelaide SA 5000

Disclaimer

footer-disclaimerfooter-disclaimer

JR Academy acknowledges Traditional Owners of Country throughout Australia and recognises the continuing connection to lands, waters and communities. We pay our respect to Aboriginal and Torres Strait Islander cultures; and to Elders past and present. Aboriginal and Torres Strait Islander peoples should be aware that this website may contain images or names of people who have since passed away.

匠人学院网站上的所有内容,包括课程材料、徽标和匠人学院网站上提供的信息,均受澳大利亚政府知识产权法的保护。严禁未经授权使用、销售、分发、复制或修改。违规行为可能会导致法律诉讼。通过访问我们的网站,您同意尊重我们的知识产权。 JR Academy Pty Ltd 保留所有权利,包括专利、商标和版权。任何侵权行为都将受到法律追究。查看用户协议

© 2017-2024 JR Academy Pty Ltd. All rights reserved.

ABN 26621887572